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Abstract

A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatorn system based on the first-

order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is ob-
tained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the

differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental tempera-

tures is obtained.

Keywords:

The first evidence of collisional quantum inter-
ference (CQI) in intramolecuar rotational energy
transfer was obtained by Sha et al. in the CO Alll( v
=0)~e’3" (v =1) system in collision with He, Ne
and other partners!?). CQI was also observed by
Chen et al. in Na; A'S) (v =8) ~b’Il, (v =14)
system in collision with Na (3s)P). The model of
CQI on rotational energy transfer was derived in an
atom-diatorn system ( with the atom being a part-
ner), and the experiment in CO A!'ll (v=0)~¢&’3"
(v =1) system in collision with He was simulated
successfullym. To further study CQI, the experi-
ment of CO AllI(v =0) ~e’S™ (v =1) system in
collision with a polar molecule as the partner is pre-
pared. In this paper, a theoretical model of CQI in
intramolecular energy transfer is derived in a diatom-
diatom system, being in line with the model in an
atom-diatom systemm
approximation of time-dependent perturbation theory
and the multipolar interaction potential. This model
can be used to predict and simulate such an experi-
ment.

1 Collisional quantum interference in a di-
atom-diatom system

The Born-Oppenheimer electronic Hamiltonian is
written in the form

, based on the first-order Born

maltipolar, collisional quantum interference (CQI), rotational energy transfer.

H.,= Hy+ Hg+ V, (1)
where H, and Hp are the electronic Hamiltonians of
molecules A and B, and V is the electrostatic interac-
tion potential. The interaction potential between two
diatomic molecules is expanded in the standard multi-

polar series.’] ,

V=SV (- 1D)E[QDT/QI)!(2i)! V2

lA’ B

* Ty (rarg) » Um(R), (2)
where I =15+ I, I and [y are the order of the mul-
tiple, r4 and rg denote the coordinates of all the elec-
trons and nuclei in molecules A and B, R is the vec-
tor joining the mass centers of the two molecules and
is a function of time R =R (¢), and U, (R) is a

spherical tensor with components[ﬁ],

U (R) = [4n/(20 + D]VPR™T'T'Y,,(R),
(3)
where Y,,, ( R) is the spherical function. Also,
T,(rarg) denotes a tensor product of two spherical
tensors with components,

T,(rarg)
= z (lAmAleB | lAlBlm)QlAmA(rA)QleB(rﬁ),

AR
(4)
where (Iamalpmpl Lalgim) is the Clebsch-Gordon
coefficient and the spherical tensor operator Q,,, is an
operator for the [th electric multipole, defined in
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general as'”)

Qi (r) = el4n/(21 + 1)]1/22rlem(r). (5)

We further recall that the scalar product of two tensor

operators is given by the expression'®]

T, - U = 2(- D"T1Us_p. (6)

It is necessary to convert the multipolar operator
Q. -a in molecule fixed frame into a space-fixed
frame

[ *

Qi = D,,.,A'_AQZ,A’—A, (7)
where Dlm is a rotation matrix element, and the defi-
nition of Euler angle was given by Brink and Satch-
ler'®). Note that there is no summation on the right-
hand side of Eq. (7), because there is only one non-

vanishing molecular frame component. Molecule A is
a polar partner in this paper.

The evolution of the interaction potentialt® is

V(t) = U (¢,0)VU(¢,0), (8)
where U(z,0) is a time evolution operator,
U(t,0) = exp(— iHyt/ h). (9)

Introducing Eq. (9) into Eq. (8), one can get
V()= U" (¢,0)VU(¢,0)
= exp(iHgt/ h )V exp(— iHyt/ 1) .(10)
The unperturbed wave functions are
S s
P | gJKM)
@] | WKM)T

where ¢ are the wave functions of electronic state and

, (11)

vibration state, and | JKM) represent rotation wave

function!1] y

LJOM) = [(2] + 1)/8*1D),.  (12)
The zeroth order unperturbed energies are defined as
E(g ?) and E(¢p JT) If vgris the coupling between

these zeorth order states, the perturbed states have

energies[u] ,

E. JKM) =2 [E(p$) + E(¢ D]

+ TE( D) ~ E(p DI + 40l ] 172,

(13)
The perturbed wave functions are
‘Ifi _ | cos$;  singy| | ¢ ?
wT| |- sing;, cosp T (14)
7 J JT e

Eq. (13) shows that the mutual perturbing states are

repulsive to each other. The energy level shifts A,

are
A=E, (]KM)_E(?’J), (15)

where A, denotes an upward shift and A_ a down-
ward shift. The argument 9, characterizing the mix-
ing effects, is given by
¢ = arcsin}vgr/[ E( ‘If?) - E(sli}-)] . (16)
In the later derivation, according to Eq. (14), we
set the mixing coefficients at ¢; = cos$; and d; =
sin;, or ¢;= - sin$; and d; = cos$; depending on
whether the perturbed state is a singlet or a triplet
state. From Egs. (13) ~ (16), the values and the
signs of ¢y and dj can be obtained. ¢; and d; will have
the same sign if energy level J is shifted upwards by
perturbation; otherwise, c; and d; will have the op-
posite signs. If both the initial state | i) and final
state | f) of a collision-induced transition are singlet-
triplet mixed states, then
i) =1 WJKM)alc; | ¢JKM)S + d; | yJKM) "]
(17)
and
L =1 gI’K'M" ) alcp | g’ K'M)S
+d; | gJK'M)T]g. (18)
The matrix elements (J'M’¢ | Q' | JM¢) can be ex-
pressed as

TMG | Qu | IMg)
_ o -m| T A | ,
= (-1 (_M, M)<J¢||Q1mllj¢>
= (=DM 1)) % L)

x [(2)" +1)(2] + 1) ]2

J . J J L J

X(-M’ m M)(—.Q’ A - A Q)

X (g Quanll ¢). (19)
The amplitude of the transition in the first-order Born
approximation can be written as

%fm (f | exp(iHgt/ %) Vexp(— iHgzt/ %) | i)dz
1 — o0
:#E(‘ D[RO/ QL) (21)! V2

X (= 1) MaMa (g 11 QY 1 Taga)
X E (lAmAleB | lAlBlm)(_ 1)m

MMy

X

Jo ia T Ty s g
-M, m M][—M; m M}

X Leyey Uagn 11 Q5,11 Jpge) SI% (55, 5)
+dpdy (g |1 QY 11 Tug) IS (7, 8)],
(20)

where

fes

I, (wyr,b) = J exp(iwygt ) R™1Cpde,

(21)
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and C,, is a Racah spherical harmonic,
= [4x/(21 + D ]V?Y,,. (22)
It is convenient, following Gray and Van Kranen-
donk['¥], to define the dimensionless variables as
r=wb/v, =z = uvt/b. (23)
In terms of these variables, the integral I,, can be
written as

Lin(x) = (1/vb*) ], (2), (24)
where J,;,, (t057, b) is dimensionless, given by
sl~m

The expression of transition probability in the first or-
der Born approgimation is
Py =

j_ F1 V)| i)de ’

(26)
Introducing Eq. (20) into Eq. (26) and considering
the orthogonal relations involving the 3 j symbols and
Clebsch-Gordan coefficients, we obtain an explicit
formula for the J—] transition probability;
P =cjciPyy + did Py

+ 2C]C]'d_]d]’ Z [(P_]]')m(P}:])

(2J4 + 1)(413 +1

= 1V2.(27)

P?J» and P,r] in Eq. (27) can be expressed as
P(s) = D2IPH(B)],
QDI Uagal | Q5 11 Tp (Uges |1 Q5,11 Jgp )
o (201 (21 (2] 4 + 125 + 1) B 6%0?
C 0 1 (@, 8) 12, (28)

where His Sor T. Eq. (27) can be rewritten in the
form of Eq. (4a) in Ref. (1],

252 p
P =ciciPy + didiPp
+ 2cpepdydy (PSPT ) 2cosfr,  (29)
with the differential interference angle
Py A (PR 12
(7P

The energy transfer cross section can be expressed
[13]
as

(30)

D _
cosfgr =

ajpr = 2ﬂ(b)J0 P_U’bdb. (31)

[[ 51 (e 11 Ttz 1 exol 552

By introducing Eq. (27) into Eq. (31), the integral
cross section can be obtained,
22 S 2,2 T
oy =cyyory + ddyoyy
S T \1/2 I
+ 2¢pcpdydy (oypo ) “coslly,  (32)
with cosine of the integral interference angle

[PIRESAMIIB MDD

I
cosfgr = 1/2-

j(Pif(b)bdb)”Z(fP},»(b)bdb

(33)
cos@IST can also be obtained by substituting Eq. (29)
into Eq. (31),

.[(P]J(b)PJ](b))l/zcosﬁ(b) bdb

cosfgr = /2

[cps (b)bdb)l/z(JPﬂ (6)bdb )

(34)
Eq. (34) gives out the relation between the differen-
tial and integral interference angle. If we only consid-
er the dipolar interaction, by substituting Eq. (28)

into Eq. (33), an explicit formula for cosf; is ob-
tained,

1
coslgr =

JZ é VA () 11 TR (xs) | db
) /2 12
[ES e vas) ([ 5S an 12e

(35)

However, Eq. (35) for the integral interference an-

gle, which has been derived for the partners with uni-
form collision velocity, is not fit to deal with the cell
experiments in which the gas species have the
Maxwell-Boltzmann velocity distribution. In this
case, Braithwaite et al. have derived a formula to get

velocity-averaged probability[“]

© _ 2
Pav= J_mP(v)v3 exp( AT ) dv/J v exp( —y—Zk;‘ )dv

2(}@’1‘]2[ P(y)y? exp(?ﬁ)du (36)

Now, the velocity-averaged integral interference an-
gle can be obtained by first substituting Eq. (28) into
Eq. (36) to get P;y(AV) and then the Py (AV) into
Eq. (33),

2
dbdy

3
2kT

I
COS@ST =

if we only consider the dipolar interaction. In the cal-

(H b%m;ﬂ | Jom (z5) 12 exp( _7151‘”,3) dbdv) I/Z(H l':—3 | Jaoo(zp) 12 exp( —Eky;‘_zj dbdv) v

(37)
culation of COA!l/ €’S~ with a polar diatom colli-
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sion interference angle, the first summation in the de-
nominator is for the !II channel, so m = 0 and
m = + 20151 ; the second summation in the denomina-
tor is for the *3 7 channel, m =0 only.
2 Discussion

The integral interference angle, 04, represents
the average effect of the differential interference an-
gle, HE_T(see Eq. (34)). The key factors on which
the integral interference angle depends (see Eqg.
(37)) are: (i) the molecular rotation constant, B;
(ii) the initial and finial angle quantum numbers J,
J (x=wwb/vand w =2ncB[J (J +1) - J(J+

meom
_ _MCOMpartner
1)1); (iii) reduced mass p(p = n 4y ond

mco ™ M partner

impact parameter b (b, = r (CO) + r (partner));
(iv) experiment temperature, T; and (v) the rela-
tive velocity between colluders.

If the experiments of CO A'll (v =0) ~ &3~
(v=1) system in collision with HCl ( partner) are
carried out at 200, 250, 300, 350 and 400 K, we
can obtain the changing tendency between the inter-
ference angles and the experimental temperatures. In
the calculations, the initial and final rotational quan-
tum numbers are ] =9 and J' =10, respectively. The
other parameters in the calculations are shown in
Table 1. From the calculated values shown in Fig.1,
with the increase of the experimental temperature,
the interference angle will increase, i.e. the degree of
the interference decreases. It is interpreted by Sha et
al. that with the increase of experimental temperature
(the kinetic energy increases), the collision becomes
stronger, and the singlet-triplet mixed states may de-

80
_—n
79[ T
g T
781
COA'TLv=1, j=9/e’L, v=0, j=9)+HCl
L >CO(A'IL v=1,j'=10/€E, v=0, j’=10)+HCl
1 —L 1 — 1 n P
%500 300 400

T(K)

Fig.1. The relation between the interference angles and the ex-
perimental temperatures.

couple due to the different energy level shifts of the
singlet and triplet states induced by the collision per-
turbation. As the results of decoupling, the mixing
degree of corresponding wave functions would become
smaller than that of the isolated-molecule and the in-
terference will become weaker as welll*!.

Table 1. Parameters for the theoretical calculation of

the integral interference angle 8%,

Rotational
Collision Reduced b A) constants B (em~1)?
system mass {a.u.) CO(A IT) CO@3 )
CO-HCI 15.85 4 1.6105 1.2836

a) From Ref. [16].
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